
International Journal of Computer Network and Security(IJCNS)
Vol5. No.1 – Jan-March 2013 Pp. 5 -11

©gopalax Journals, Singapore
available at : www.ijcns.com

5
gopalax publications

CMMI STANDARDS IN SOFTWARE DEVELOPING
PROCESS

1 C. SenthilMurugan, 2 Dr. S. Prakasam.

 PhD Scholar Asst., Professor
1,2Dept of Computer Science & Application, SCSVMV University, Kanchipuram

1Dept of MCA , Thiruvalluvar College of Engineering and Technology, Vandavasi.

ABSTRACT

Software development and maintenance is the activity that is used to make the error-free Software and
also concentrates on time-consuming and complex activity. The software quality management is used to
evaluate the quality of a software product and to keep its level high is much more difficult than to do them for
the other industrial products. The software quality is maintained to make the software as customer satisfied one.
In this paper I have concentrated to keep the quality level of software products high, firstly the Software Quality
Assurance activity process like CMMI Maturity levels are defined in the early stages of software development,
it may reduce the problem that are occurring at the time of development.

Key words: Software Quality Assurance Software development, SQA process, CMMI Maturity level.

1. INTRODUCTION
The Software has been used for

commercial purpose. With every aspect of software
development, Software engineers have been tasked
to solve the large and complex programs and in a
cost effective and efficient manner. Also the
development and maintenance of the software
product has become an important criterion. The
Software quality assurance is implemented in the
early stages of software development life phases,
this is used to make the error free software and
reduce the rework of development.

In the early years, engineers faced many

problems, without having a better knowledge in the
software fields, such as “Late delivery of software,
Development team exceeding the budget, poor
quality, user requirement are not completely
supported by the software, difficult maintenance
and unreliable software and lack of systematic
approach, this problem are overcome by the
implementation of software quality activities.

To develop a software product, the
following criteria has to be satisfied:

• User needs and constraints must be determined

and explicitly stated.
• The source code must be tested thoroughly.
• The product must satisfy the user needs
• Supporting documents such as user guide,

installation procedures and maintenance
documents must be prepared.

Software Engineering

 Software engineering is an emerging
discipline that focuses on the creation,
development, operation and maintenance of cost
effective, reliable correct and high quality solution
to software problems and it is the application of a
systematic, disciplined and quantifiable approach

With the development, operation, and maintenance
of software.
 The software engineering is useful

• To acquire skills to develop large programs
• Ability to solve complex programming

problems
• Learn the techniques
• To acquire skills to be a better programmer

 The primary goal of software engineering
is to improve the quality of software products and
to increase the productivity and job satisfaction of
software engineers.

2. SOFTWARE QUALITY ASSURANCE
(SQA)

A systematic, planned set of actions

necessary to provide adequate confidence that the
software development process or the maintenance
process of a software system product conforms to

http://www.ijcns.com/

International Journal of Computer Network and Security(IJCNS)
Vol5. No.1 – Jan-March 2013 Pp. 5 -11

©gopalax Journals, Singapore
available at : www.ijcns.com

6
gopalax publications

established functional technical requirements as
well as with the managerial requirements of
keeping the schedule and operating within the
budgetary confines. The difference between the
quality control and quality assurance should be
recognized. Quality control activities are done to
sort the products that do not qualify for the
qualified products to not deliver the customer or to
not sell in the market.

A Software process is a set of activities
and associated results which produces software
products. These activities are mostly carried out by
software engineers. There are four fundamental
process activities which are common to all software
process.

These activities are
1. Software Specification:

The functionality of the software and
constraints on its operation must be defined.

2. Software Development:

The software to meet the specification must be
produced.

3. Software Validation

The Software must be validated to ensure that
it does what the customer wants.

4. Software Evaluation

The software must evolve to meet changing
customer needs.

2.1Common Process Framework

Figure-1.1: Software Process framework

Task Sets: A number of task sets-each a
collection of software engineering work tasks,
project milestone, software work products and
deliverables and software quality assurance points.

Framework Activities: The task sets
enable the framework activities to be adapted to the
characteristics of the software project and the
requirements of the project team. The generic
process framework activities are

1. Communication: The customer requirement

information gathering is done by
communication.

2. Planning: The planning activity defines the
engineering work plan, describes technical
risks, list resource requirements, work
products produced and defines work schedule.

3. Modeling: The modeling activity defines the
requirement analysis and design.

4. Construction: The construction activity
implements the corresponding coding and
testing.

5. Deployment: The software delivered for
customer evaluation and feedback is obtained.

2.2 Umbrella Activities
 Umbrella activities –such as quality assurance,
software configuration management and
measurement. Umbrella activities are independent
of any one framework activity and occur
throughout the process. The umbrella activities are

1. Software project tracking and control: The

activity helps to access the software team
progress and take corrective action to maintain
schedule.

2. Risk management: This activity analysis the
risk that may affect the quality.

3. Software quality assurance: This activity
maintains the required software quality.

4. Formal technical reviews: This activity helps
to analyze the engineering work products to
uncover and clear errors before they proceed to
the next activity.

5. Software configuration management: This
activity manages the configuration process
when any change in the software process.

6. Work product preparation and production:
This activity defines the model, document
forms and lists to be carried out.

7. Reusability management: This activity defines
the work product reuse.

http://www.ijcns.com/

International Journal of Computer Network and Security(IJCNS)
Vol5. No.1 – Jan-March 2013 Pp. 5 -11

©gopalax Journals, Singapore
available at : www.ijcns.com

7
gopalax publications

8. Measurement: This activity defines the project
and product measure to assist the software
team in delivering the required software.

3. PROBLEM FORMULATION

 Software Errors: The error resulting from bad
code in some program involved in producing the
erroneous result.

 Software faults: Due to the Software errors the
Software fault occurs.

 Software failures: Due to Bug/defect/fault
consequence of a human error.

Figure.3.1 Software Errors, software faults and

software failures

3.1 Nine Causes of Software Errors

1. Faulty requirements definition
2. Client developer communication failures
3. Deliberate deviations from software
requirements
4. Logical design errors
5. Coding errors
6. Noncompliance with documentation and coding
instructions
7. Shortcomings of the testing process
8. User interface and procedure errors
9. Documentation errors

3.2 Development process relating to defects

Majority of defects is introduced in earlier phases

Table-1: Majority of defects
Phase Percentage

of defects
Effort to
fix defects

Requirements 56 82
Design 27 13
Code 7 1
Others 10 4

Relative cost of fixing defects

Table-2: Cost of fixing defects
Phase in which found Cost Ratio
Requirements 1
Design 3-6
Coding 10
Unit/Integration testing 15-40
System/Acceptance testing 30-70
Production 40-1000

4. PROCESS OF SQA SYSTEM

The processes are classified into two main groups:

1. Organizational processes, and
2. Departmental/Project processes.

For example,

1. Galin explains an SQA system as dividing
its components five major classes

2. Pre-project quality components,
3. Project life cycle quality components,
4. Infrastructure error preventive and

improvement components,
5. Software quality management

components,
6. Standardization, certification and SQA

assessment components,
7. Organizing for SQA-the human

components.

http://www.ijcns.com/

International Journal of Computer Network and Security(IJCNS)
Vol5. No.1 – Jan-March 2013 Pp. 5 -11

©gopalax Journals, Singapore
available at : www.ijcns.com

8
gopalax publications

4.1 Life-Cycle Phases of SQA System
Development:

The implementation order, start point,

duration and end point of the SQA processes are
analyzed.

First of all, the phases of Software
Development Lifecycle and SQA System
Development Lifecycle should be explained.
Software Development Lifecycle is a subset of the
SQA System Development Lifecycle. Here, the
classical waterfall model is chosen as Software
Development Lifecycle model

1. Requirements Definition/Analysis: In this phase,
software engineers gather customer requirements
by defining them with the help of customer and
domain experts. Most of the time, a developed
software must have interfaces with existing
hardware and software. Therefore the information
about them helps to define the interface
requirements. In this phase, software engineers
must understand the nature of the program to be
built. Therefore, understanding the information
domain, system’s required functions, behaviors,
performance and interface are musts.

2. Design: In this phase, software designer
identifies the system inputs, outputs and processes.
Processing algorithms, data structures, databases
and software structures are also defined.

3. Code Generation: In this phase, software
engineers and programmers transform the design
into a code by using a selected programming
language. Code review, unit tests, unit integration
tests is part of this phase.

4. System Testing: In this phase, the system is
tested as a whole and system integration is realized.
Activities are performed by the testing team.

5. Installation and Conversion: After customer
approval, the software is installed to serve the
customer. If the new software will be used to
replace the existing software, a suitable conversion
process must be performed to prevent the
interruption in the organization’s services.

6. Operation and Maintenance: Operation phase
begins after the installation and conversion is
completed. Maintenance activities are performed
during the normal operation period which generally
continues a few years.

SQA System Development Lifecycle

includes the above software development lifecycle
phases, but it has a few phases prior to software
development lifecycle phases:

1. Pre-Project Phase: In this phase, organizational
level activities will be performed. None of the
activities of this phase are related to a specific
project. During this phase, the SQA system of the
organization is initiated, organization quality policy
and QA methodology are defined, QA staff is
assigned an initial SQA component are developed.

2. Proposal/Contract Phase: Activities of this
phase are performed by the proposal team and legal
department for a contract between the customer and
the organization. During this phase, firstly proposal
team develops a proposal draft from the customer
requirements document. After reviewing a proposal
draft with a customer, a contract draft is developed
from a final approved proposal document. After
reviewing the contract draft with the customer, a
mutually agreed contract which defines source,
timetable and cost estimation for the project is
achieved.

3. Project Preparation Phase: In this phase, project
products, project interfaces, development
methodology, development tools, standards,
procedures, project schedule, resource and cost
estimation, project milestones, staff organization,
quality goals, QA activities are identified.

5. CMMI FRAMEWORK

The CMMI framework is the current stage
of work on process assessment and improvement
that started at the software engineering institute in
the 1980s. A capability level is a well-defined
evolutionary plateau describing the organization's
capability relative to a process area. A capability
level consists of related specific and generic
practices for a process area that can improve the
organization's processes associated with that
process area. Each level is a layer in the foundation
for continuous process improvement.

The CMMI model is divided into five
maturity levels:

 1. Initial
 2. Managed
 3. Defined
 4. Quantitatively Managed
 5. Optimizing

http://www.ijcns.com/

International Journal of Computer Network and Security(IJCNS)
Vol5. No.1 – Jan-March 2013 Pp. 5 -11

©gopalax Journals, Singapore
available at : www.ijcns.com

9
gopalax publications

Level 1 – Initial: In Level 1, processes

are usually ad hoc and chaotic. The success of this
organization depends on the competence and
heroics of the people in the organization and not on

the use of proven processes. In spite of this ad hoc,
chaotic environment, maturity level 1 organizations
often produce products and services that work,
however, they frequently exceed the budget and
schedule of their projects.

Figure. 5.1: Activities of CMMI

Level 2 – Repeatable: In Level 2, software

development successes are repeatable. The
organization may use some basic project
management to track cost and schedule. Process
discipline helps ensure that existing practices are
retained during stressful times. As a result, projects
are executed and managed according to techniques
their documented plans.

Level 3 – Defined: In Level 3, processes
are well characterized and understood, and are
described in standards, procedures, tools, and
methods. The organization’s set of standard
processes, which is the basis for level 3, is
established and improved over time. These standard
processes are used to establish consistency across the
organization. Projects establish their defined
processes by the organization’s set of standard
processes according
for tailoring guidelines.

 Level 4 – Managed: In Level 4,
management using precise measurements, can
effectively control the software development effort.
In particular, management can identify ways to
adjust and adapt the process to particular projects
without measurable losses of quality or deviations
from specifications. Subprocesses are selected that
significantly contribute to overall process
performance. These selected subprocesses are
controlled using statistical and other quantitative

Level 5 – Optimizing: In Level 5, the focus
is on continually improving process performance
through both incremental and innovative
technological improvements. Quantitative process
improvement objectives for the organization are
established, continually revised to reflect changing
business objectives, and used as criteria in managing
process improvement. Process improvements to
address common causes of process variation and
measurably improve the organization’s processes are
identified, evaluated, and deployed. The
organization’s ability to rapidly respond to changes
and opportunities is enhanced by finding ways to
accelerate and share learning.

Audacious Inquiry is actively working to

incorporate and embrace the CMMI methodology
because we believe it will provide our organization
with the essential elements to create improvement
and effectiveness across projects, divisions, and the
entire organization. As Audacious Inquiry continues
to grow in size and technical expertise, CMMI will
help integrate our separate organizational functions,
set process improvement goals and priorities, and
provide guidance for quality processes.

6. CMMI KEY PROCESS AREAS

A Process Area is a cluster of related
practices in an area that, when implemented
collectively, satisfy a set of goals considered
important for making significant improvement in that
area. All CMMI process areas are common to both
continuous and staged representations.

The continuous representation enables the

organization to choose the focus of its process
improvement efforts by choosing those process areas,
or sets of interrelated process areas, that best benefit
the organization and its business objectives.
Although there are some limits on what an
organization can choose because of the dependencies
among process areas, the organization has
considerable freedom in its selection.

Once you select the process areas, you must

also select how much you would like to improve the
processes associated with those process areas (i.e.,
select the appropriate capability level). Capability
levels and generic goals and practices.

http://www.ijcns.com/

International Journal of Computer Network and Security(IJCNS)
Vol5. No.1 – Jan-March 2013 Pp. 5 -11

©gopalax Journals, Singapore
available at : www.ijcns.com

10
gopalax publications

The CMMI Process Areas (PAs) can be
grouped into the following four categories

• Process Management
• Project Management
• Engineering
• Support

Table-3: Organization of Process Areas

Category Process area

Process
Management

• Organizational process definition
• Organizational process focus
• Organizational training
• Organizational process

performance
• Organizational innovation and

development
Project
management

• Project planning
• Project monitoring and control

supplier agreement management
• Integrated project management
• Risk management
• Integrated testing
• Quantitative project management

Engineering • Requirements management
• Requirement development
• Technical solution
• Product integration
• Verification
• Validation

Support • Configuration management
• Process and product quality

management
• Measurement and analysis
• Decision analysis and resolution
• Organizational environment for

integration
• Causal analysis and resolution

6. 1 Goals of CMMI

 The Goals are descriptions of desirable
organization states. Each process area has associated
goals.
• Corrective actions are managed to closure

when the project’s performance or results
deviated significantly from the plan.

• Actual performance and progress of the
project is monitored against the project plan.

• The requirements are analyses and validated
and a definition of the required functionality is
developed.

• Root causes of defects and other problems are
systematically determined.

• The process is institutionalized as a defined
process.

7. CONCLUSION

The SQA components were explained by
considering the SQA system processes, and their
inputs, outputs and sub-processes. They were
classified as organizational level and
department/project level and also the formulation of
errors and the defects that are raised at the time of
software development phases are explained with
CMMI framework and its goals. As a result, the aim
was to make a better software that is fully satisfying
the requirements of customers with the help of SQA
system components.

REFERENCES

1. Galin, Daniel (2004), Software Quality
Assurance – From theory to
implementation, Pearson –Addison Wesley,
England.

2. Abdel-Hamid, T.; Madnick, S. E. (1991),
Software Project dynamics: an Integrated
Approach, Prentice-Hall Software Series,
Englewood Cliffs, New Jersey, USA.

3. Ambler, Scott W. (2002), Examining the
Agile Cost of Change Curve, Ambysoft Inc.

4. ARENA Rockwell Automation (2007),
Forward VisibilityFor Your Business,
Balan, S. (2003), A Composite Model for
Software Quality Assurance

5. Bass, Len; Paul Clements; Rick Kazman
(2003), Software Architecture in Practice,
Second Edition. Boston: Addison-Wesley,
p. 21-24. ISBN 0-321-15495-9.

6. Bertsekas, Tsitsiklis (1996), Neuro-
Dynamic Programming, Athena Scientific.

7. Boehm, B. W. (1981), Software
Engineering Economics, Prentice-Hall, NJ,
USA.

8. Brennecke, Andreas; Keil-Slawik, Reinhard
(1996), Position Papers from Dagstuhl
seminar 9635 on History of Software
Engineering August 26-30, 1996, Germany.

http://www.ijcns.com/

International Journal of Computer Network and Security(IJCNS)
Vol5. No.1 – Jan-March 2013 Pp. 5 -11

©gopalax Journals, Singapore
available at : www.ijcns.com

11
gopalax publications

9. Chikofsky, E.J.; J.H. Cross II (January
1990), Reverse Engineering and Design
Recovery: Taxonomy in IEEE Software,
IEEE Computer Society: 13–17.

10. Pressman, Roger S. (2000), Software
Engineering - A Practitioner’s Approach,
European Adaptation by D. Ince, 5th
Edition, McGraw Hill International, London

11. The Linux Information Project (2004 –
2007), Bellevue Linux, Bellevue, WA,
USA.

12. Warden, R. (1992), Software Reuse and
Reverse Engineering in Practice. London,
England: Chapman & Hall, 283–305.

13. Zave, P. (1997), Classification of Research
Efforts in Requirements Engineering, ACM
Computing Surveys, 29 (4): 315-321

14. Padberg, Frank (1999), A Probabilistic
Model for Software Projects, Proceedings
ESEC/FSE 7 109-126, Lecture Notes in
Computer Science 1687, Springer 1999.

15. Padberg, Frank (2000), Estimating the
Impact of the Programming Language on
the Development Time of a Software
Project, Proceedings International Software
Development and Management Conference
ISDM/AP-SEPG 287-2

16. N. Gross; M. Stepanek; O. Port; J. Carey
(December, 1999), Software Hell: Glitches
cost billions of dollars and jeopardize
human lives. How can we kill the bugs?
Business Week Online –International,
NITS (2006), NIST/SEMATECH e-
Handbook of Statistical Methods,

17. Ntourntoufis, Panos (2002), From Software
Quality Control to Quality Assurance,
UPSPRING Software, UK.

18. Nuseibeh, Bashar; Easterbrook, Steve
(2000), Requirements Engineering: A
Roadmap, Future of Software Engineering,
Limerick Ireland ACM 2000 1-58113-253-
0/00/6

19. Warden, R. (1992), Software Reuse and
Reverse Engineering in Practice. London,
England: Chapman & Hall, 283–305.

http://www.ijcns.com/

